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Figure 1: Three main steps of SLIM. (1) Sub-structure embedding: extract local sub-graphs and embed them in a metric
space. (2) sub-structure landmarking: compute sub-structure representatives through unsupervised clustering across graphs. (3)
Identity-preserving graph pooling: project each graph on the common set of sub-structure landmarks for final prediction.
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Figure 1: Three main steps of SLIM. (1) Sub-structure embedding: extract local sub-graphs and embed them in a metric apnd A7 are the neighbors of node 7 in graph G;

space. (2) sub-structure landmarking: compute sub-structure representatives through unsupervised clustering across graphs. (3) ! | 1
Identity-preserving graph pooling: project each graph on the common set of sub-structure landmarks for final prediction. b
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Figure 1: Three main steps of SLIM. (1) Sub-structure embedding: extract local sub-graphs and embed them in a metric
space. (2) sub-structure landmarking: compute sub-structure representatives through unsupervised clustering across graphs. (3)
Identity-preserving graph pooling: project each graph on the common set of sub-structure landmarks for final prediction.
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Figure 2: End-to-end training architecture of the SLIM network.
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Table 1: Classification on benchmark data-sets (cheminformatics, bioinformatics & social networks).

ALG. MUTAG PIC NCII Protein D&D IMDB-B IMDB-M COLLAB
GK 81.38+1.74 55.65+0.46 62.494+0.27 71.394+0.31  74.38+0.69  65.87+0.98 43.89+0.38  72.84+0.28
PK 76.00+2.69  59.50+2.44 82.544047 73.684+0.68  78.254+0.51 — — —

WLGK  84.11+£1.91 57.97+£249 84.46+0.45 74.684£0.49  78.344+0.62  73.40+£4.63 49.33+4.75 79.02£1.77
PC-SAN 92.63+4.21 60.00+4.82 78.59+1.89 75.89+2.76 77.124+2.41 71.00+2.29 45.23+2.84 72.601+2.15
DGCNN  85.83+1.66 58.59+2.47 74.46+047 75.54+094 79.37£1.03 70.03£0.86 47.83+0.85 73.761+0.49
DiffPool  90.52+3.98 — 76.534+2:23 75824356 T8.951240 73584324 52.1312.71 T79.7011.84
GNTK  90.124+8.58 67.92+698 75.20+1.53 75.61+£4.24  79.4242.18  75.931+3.61 52.82+4.65 83.60+1.22

SAG 73.3349.68 69.673.12 74.16-1.29 71.862097 76914212 7261223 51804208 79.68+1.02

GIN 90.03+8.82 64.60-£7.00 7984457 '75.28+£2.65 77584294 75.15£5.08 523314284 80.21-4192
StrPool  82.2143.13  71.464+2.21 71.314+1.14 76.89+1.67 79.72+1.98  73.77+£2.01 50.17£1.28 79.14+0.88
SLIM 93.284+3.36 72.41+6.92 80.53+2.01 77.47+4.34 79.61+2.66 77.23+2.12 53.384+4.02 78.2242.02
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Figure 3: SLIM has a stable performance based on the accuracy-vs-epoch curve.
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(a) Interaction vs density (counting). (b) Impact of landmark set size K.

Figure 4: The performance of SLIM w.r.t. the choice of hyper-parameters and graph level feature.

In Figure|4(a), we compare performance of SLIM when
using the weights (or density) of the landmark p; (7), or the
interaction matrix C; (9), as graph-level features. The in-
teraction feature consistently generates better accuracy than
distribution-based features, validating the importance of mod-
eling the interacting relation in graph classification tasks.

(c¢) Impact of sub-structure size.
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